Making therapeutic proteins last longer

Happy TRAILs to you: PEGylation of proteins through complementary interactions between a His-tag and a Ni2+ complex of nitrilotriacetic acid (NTA, see picture), a well-established practice in protein research, was used to improve the half-life of therapeutic proteins in the blood following systemic administration in vivo. Animal models show that this site-specific modification improves the efficacy of modified TRAIL proteins.

Happy TRAILs to you: PEGylation of proteins through complementary interactions between a His-tag and a Ni2+ complex of nitrilotriacetic acid (NTA, see picture), a well-established practice in protein research, was used to improve the half-life of therapeutic proteins in the blood following systemic administration in vivo. Animal models show that this site-specific modification improves the efficacy of modified TRAIL proteins.

Proteins are responsible for pretty much everything in the human body. When there is a problem with the proteins, it usually leads to disease.

Protein therapy shows enormous potential for treating disease. But sometimes the proteins in a therapeutic treatment break down or are metabolized before they ever reach their target destination.

In a recent paper published in Angewandte Chemie, researchers from the laboratories of Martin Pomper (radiology oncology) and Seulki Lee (radiology, Center for Nanomedicine) at the Johns Hopkins School of Medicine and developed a simple method to validate protein drugs in animal models, said Lee. An illustration related to the paper appeared on the cover of the journal.

“We show that we can extend the half-life, that is, the amount of time the drug stays in the blood, while maintaining the activity of the model protein drug, TRAIL,” said one of the lead authors Maggie Swierczewska. “This has great implications for drug screening and validation methods, especially for the growing protein drug market.”

According to the paper, by attaching a molecule of  polyethylene glycol (PEG) to certain sites on the TRAIL protein drugs through an already well known method, the half-life of the drug could be extended without affecting its beneficial activity.

Authors on this paper include Tae Hyung Kim, Magdalena Swierczewska, Yumin Oh, AeRyon Kim, Dong Gyu Jo, Jae Hyung Park,  Youngro Byun, Scheherazade Sadegh-Nasseri, Martin G. Pomper, Kang Choon Lee, Seulki Lee. Author affiliations include the departments of Radiology and Pathology at the Johns Hopkins School of Medicine, the Johns Hopkins Center of Cancer Nanotechnology Excellence, the Johns Hopkins Institute for NanoBioTechnology, Center for Nanomedicine and collaborators at Sungkyunkwan University and Seoul National University, both in Korea.

Reference: Kim, T. H., Swierczewska, M., Oh, Y., Kim, A., Jo, D. G., Park, J. H., Byun, Y., Sadegh-Nasseri, S., Pomper, M. G., Lee, K. C. and Lee, S. (2013), Mix to Validate: A Facile, Reversible PEGylation for Fast Screening of Potential Therapeutic Proteins In Vivo. Angew. Chem. Int. Ed.. Vol. 52, Issue 27, pages 6880-6884, doi: 10.1002/anie.201302181

Coated nanoparticles move easily into brain tissue

Real-time imaging of nanoparticles green) coated with polyethylene-glycol (PEG), a hydrophilic, non-toxic polymer, penetrate within normal rodent brain. Without the PEG coating, negatively charged, hydrophobic particles (red) of a similar size do not penetrate. Image by Elizabeth Nance, Kurt Sailor, Graeme Woodworth.

Johns Hopkins researchers report they are one step closer to having a drug-delivery system flexible enough to overcome some key challenges posed by brain cancer and perhaps other maladies affecting that organ. In a report published online Aug. 29 in Science Translational Medicine, the Johns Hopkins team says its bioengineers have designed nanoparticles that can safely and predictably infiltrate deep into the brain when tested in rodent and human tissue.

“We are pleased to have found a way to prevent drug-embedded particles from sticking to their surroundings so that they can spread once they are in the brain,” said Justin Hanes, Lewis J. Ort Professor of Ophthalmology and project leader in the Johns Hopkins Center of Cancer Nanotechnology Excellence.

Standard protocols following the removal of brain tumors include chemotherapy directly applied to the surgical site to kill any cancer cells left behind. This method, however, is only partially effective because it is hard to administer a dose of chemotherapy high enough to sufficiently penetrate the tissue to be effective and low enough to be safe for the patient and healthy tissue. Furthermore, previous versions of drug-loaded nanoparticles typically adhere to the surgical site and do not penetrate into the tissue.

These newly engineered nanoparticles overcome this challenge. Elizabeth Nance, a graduate student in chemical and biomolecular engineering, and Johns Hopkins neurosurgeon Graeme Woodworth, suspected that drug penetration might be improved if drug-delivery nanoparticles interacted minimally with their surroundings. Nance achieved this by coating nano-scale beads with a dense layer of PEG or poly(ethylene glycol). The team then injected the coated beads, which had been marked with a fluorescent tag,  into slices of rodent and human brain tissue. They found that a dense coating of PEG allowed larger beads to penetrate the tissue, even those beads that were nearly twice the size previously thought to be the maximum possible for penetration within the brain. They then tested these beads in live rodent brains and found the same results.

Elizabeth Nance. Photo by Ming Yang.

The results were similar when biodegradable nanoparticles carrying the chemotherapy drug paclitaxel and coated with PEG were used. “It’s really exciting that we now have particles that can carry five times more drug, release it for three times as long and penetrate farther into the brain than before,” said Nance. “The next step is to see if we can slow tumor growth or recurrence in rodents.”

Woodworth added that the team “also wants to optimize the particles and pair them with drugs to treat other brain diseases, like multiple sclerosis, stroke, traumatic brain injury, Alzheimer’s and Parkinson’s.” Another goal for the team is to be able to administer their nanoparticles intravenously, which is research they have already begun.

Additional authors on the paper include Kurt Sailor, Ting-Yu Shih, Qingguo Xu, Ganesh Swaminathan, Dennis Xiang, and Charles Eberhart, all from The Johns Hopkins University.

Story adapted from an original press release by Cathy Kolf.

 

Additional news coverage of this research can be found at the following links:

Nanotechnology/Bio & Medicine

Death and Taxes Mag

New Scientist Health

Nanotech Web

Portugese news release (in Portugese)

German Public Radio (in German)

Light-activated synthetic protein illuminates disease destruction

Illustration of collagen’s rope-like structure. Click to watch video. (INBT Animation Studios)

Johns Hopkins researchers have created a synthetic protein that, when activated by ultraviolet light, can guide doctors to places within the body where cancer, arthritis and other serious medical disorders can be detected. The synthetic protein does not zero in directly on the diseased cells. Instead, it binds to nearby collagen that has been degraded by disease or injury.

“These disease cells are like burglars who break into a house and do lots of damage but who are not there when the police arrive,” said S. Michael Yu, a faculty member in the Whiting School of Engineering’s Department of Materials Science and Engineering. “Instead of looking for the burglars, our synthetic protein is reacting to evidence left at the scene of the crime,” said Yu, who was principal investigator in the study.

The technique could lead to a new type of diagnostic imaging technology and may someday serve as a way to move medications to parts of the body where signs of disease have been found. In a study published in the Aug. 27-31 Online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported success in using the synthetic protein in mouse models to locate prostate and pancreatic cancers, as well as to detect abnormal bone growth activity associated with Marfan syndrome.

Collagen, the body’s most abundant protein, provides structure and creates a sturdy framework upon which cells build nerves, bone and skin. Some buildup and degradation of collagen is normal, but disease cells such as cancer can send out enzymes that break down collagen at an accelerated pace. It is this excessive damage, caused by disease, that the new synthetic protein can detect, the researchers said.

A key collaborator was Martin Pomper, a School of Medicine professor of radiology and co-principal investigator of the Johns Hopkins Center of Cancer Nanotechnology Excellence. Pomper and Yu met as fellow affiliates of the Johns Hopkins Institute for NanoBioTechnology. “A major unmet medical need is for a better non-invasive characterization of disrupted collagen, which occurs in a wide variety of disorders,” Pomper said. “Michael has found what could be a very elegant and practical solution, which we are converting into a suite of imaging and potential agents for diagnosis and treatment.”

The synthetic proteins used in the study are called collagen mimetic peptides or CMPs. These tiny bits of protein are attracted to and physically bind to degraded strands of collagen, particularly those damaged by disease. Fluorescent tags are placed on each CMP so that it will show up when doctors scan tissue with fluorescent imaging equipment. The glowing areas indicate the location of damaged collagen that is likely to be associated with disease.

In developing the technique, the researchers faced a challenge because CMPs tend to bind with one another and form their own structures, similar to DNA, in a way that would cause them to ignore the disease-linked collagen targeted by the researchers.

To remedy this, the study’s lead author, Yang Li, synthesized CMPs that possess a chemical “cage” to keep the proteins from binding with one another. Just prior to entering the bloodstream to search for damaged collagen, a powerful ultraviolet light is used to “unlock” the cage and allow the CMPs to initiate their disease-tracking mission. Li is a doctoral student from the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. Yu, who holds a joint appointment in that department, is his doctoral adviser.

Yu’s team tested Li’s fluorescently tagged and caged peptides by injecting them into lab mice that possessed both prostate and pancreatic human cancer cells. Through a series of fluorescent images taken over four days, researchers tracked single strands of the synthetic protein spreading throughout the tumor sites via blood vessels and binding to collagen that had been damaged by cancer.

Similar in vivo tests showed that the CMP can target bones and cartilage that contain large amounts of degraded collagen. Therefore, the new protein could be used for diagnosis and treatment related to bone and cartilage damage.

Although the process is not well understood, the breakdown and rebuilding of collagen is thought to play a role in the excessive bone growth found in patients with Marfan syndrome. Yu’s team tested their CMPs on a mouse model for this disease and saw increased CMP binding in the ribs and spines of the Marfan mice, as compared to the control mice.

Funding for the research was provided by the National Science Foundation, the National Institutes of Health and the Department of Defense. The synthetic protein process used in this research is protected by patents obtained through the Johns Hopkins Technology Transfer Office.

Along with Yu, Li and Pomper, co-authors of this study were instructor Catherine A. Foss and medical resident Collin M. Torok from the Department of Radiology and Radiological Science at the Johns Hopkins School of Medicine; Harry C. Dietz, a professor, and Jefferson J. Doyle, a doctoral student, both of the Howard Hughes Medical Institute and Institute of Genetic Medicine at the School of Medicine; and Daniel D. Summerfield a former master’s student in the Department of Materials Science and Engineering.

Adapted from an original press release by Phil Sneiderman.

 

Light-activated synthetic protein illuminates disease destruction

Illustration of collagen’s rope-like structure. Click to watch video. (INBT Animation Studios)

Johns Hopkins researchers have created a synthetic protein that, when activated by ultraviolet light, can guide doctors to places within the body where cancer, arthritis and other serious medical disorders can be detected. The synthetic protein does not zero in directly on the diseased cells. Instead, it binds to nearby collagen that has been degraded by disease or injury.

“These disease cells are like burglars who break into a house and do lots of damage but who are not there when the police arrive,” said S. Michael Yu, a faculty member in the Whiting School of Engineering’s Department of Materials Science and Engineering. “Instead of looking for the burglars, our synthetic protein is reacting to evidence left at the scene of the crime,” said Yu, who was principal investigator in the study.

The technique could lead to a new type of diagnostic imaging technology and may someday serve as a way to move medications to parts of the body where signs of disease have been found. In a study published in the Aug. 27-31 Online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported success in using the synthetic protein in mouse models to locate prostate and pancreatic cancers, as well as to detect abnormal bone growth activity associated with Marfan syndrome.

Collagen, the body’s most abundant protein, provides structure and creates a sturdy framework upon which cells build nerves, bone and skin. Some buildup and degradation of collagen is normal, but disease cells such as cancer can send out enzymes that break down collagen at an accelerated pace. It is this excessive damage, caused by disease, that the new synthetic protein can detect, the researchers said.

A key collaborator was Martin Pomper, a School of Medicine professor of radiology and co-principal investigator of the Johns Hopkins Center of Cancer Nanotechnology Excellence. Pomper and Yu met as fellow affiliates of the Johns Hopkins Institute for NanoBioTechnology. “A major unmet medical need is for a better non-invasive characterization of disrupted collagen, which occurs in a wide variety of disorders,” Pomper said. “Michael has found what could be a very elegant and practical solution, which we are converting into a suite of imaging and potential agents for diagnosis and treatment.”

The synthetic proteins used in the study are called collagen mimetic peptides or CMPs. These tiny bits of protein are attracted to and physically bind to degraded strands of collagen, particularly those damaged by disease. Fluorescent tags are placed on each CMP so that it will show up when doctors scan tissue with fluorescent imaging equipment. The glowing areas indicate the location of damaged collagen that is likely to be associated with disease.

In developing the technique, the researchers faced a challenge because CMPs tend to bind with one another and form their own structures, similar to DNA, in a way that would cause them to ignore the disease-linked collagen targeted by the researchers.

To remedy this, the study’s lead author, Yang Li, synthesized CMPs that possess a chemical “cage” to keep the proteins from binding with one another. Just prior to entering the bloodstream to search for damaged collagen, a powerful ultraviolet light is used to “unlock” the cage and allow the CMPs to initiate their disease-tracking mission. Li is a doctoral student from the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. Yu, who holds a joint appointment in that department, is his doctoral adviser.

Yu’s team tested Li’s fluorescently tagged and caged peptides by injecting them into lab mice that possessed both prostate and pancreatic human cancer cells. Through a series of fluorescent images taken over four days, researchers tracked single strands of the synthetic protein spreading throughout the tumor sites via blood vessels and binding to collagen that had been damaged by cancer.

Similar in vivo tests showed that the CMP can target bones and cartilage that contain large amounts of degraded collagen. Therefore, the new protein could be used for diagnosis and treatment related to bone and cartilage damage.

Although the process is not well understood, the breakdown and rebuilding of collagen is thought to play a role in the excessive bone growth found in patients with Marfan syndrome. Yu’s team tested their CMPs on a mouse model for this disease and saw increased CMP binding in the ribs and spines of the Marfan mice, as compared to the control mice.

Funding for the research was provided by the National Science Foundation, the National Institutes of Health and the Department of Defense. The synthetic protein process used in this research is protected by patents obtained through the Johns Hopkins Technology Transfer Office.

Along with Yu, Li and Pomper, co-authors of this study were instructor Catherine A. Foss and medical resident Collin M. Torok from the Department of Radiology and Radiological Science at the Johns Hopkins School of Medicine; Harry C. Dietz, a professor, and Jefferson J. Doyle, a doctoral student, both of the Howard Hughes Medical Institute and Institute of Genetic Medicine at the School of Medicine; and Daniel D. Summerfield a former master’s student in the Department of Materials Science and Engineering.

Adapted from an original press release by Phil Sneiderman.

 

Hanes discusses nanoparticle-based drug delivery

Justin Hanes was among the invited speakers at the 2012 NanoBio Symposium.

“Would you poison the entire garden to kill one weed?” asked Justin Hanes at the opening of his talk at the 2012 Johns Hopkins annual NanoBio Symposium. “Unfortunately, that is how most chemotherapy works today.” Hanes is a professor of ophthalmology at Johns Hopkins School of Medicine and an affiliated faculty member of the Institute for NanoBioTechnology.

On average, less than one percent of any chemotherapy cancer treatment will go to a patient’s tumor. The remaining 99 percent circulates through the rest of the patient’s body, kills healthy cells unnecessarily, and causes often unbearable side effects. This alarming statistic has led Hanes and his team to focus on targeted, chemotherapeutic drug delivery using nanoparticles.

Hanes explained that nanoparticles are ideal in cancer treatment because tumors form new blood vessels within themselves to be able to receive nutrients, and these tumor-associated blood vessels are leaky. Thin, leaky blood vessel walls are ideal for drug-loaded nanoparticles, which are on the order of 1-100 nanometers in diameter, to break through to reach tumor cells. The ultimate goal of nanoparticle drug delivery for cancer is to synthesize bio-targeted particles that provide localized delivery straight to the tumor alone, improving drug effectiveness and reducing undesirable side effects.

Many members of the Hanes lab focus on drug delivery in mucus, which exists in the lining of the lungs, vaginal tract, intestines, and many other organs. Although mucus is essential to prevent viruses and bacteria from entering tissues, its sticky consistency also acts as a barrier to drug-loaded nanoparticles. Hanes’s students are synthesizing nanoparticles that can pass through mucosal barriers.

Scientists previously believed that pores within mucus were around 25 nm in size and that nanoparticles would not be able to pass through. However, the Hanes lab’s work shows that these pores may be closer to 400 nm and that particles with a diameter of 500 nm coated with a simple, biodegradable polymer called PEG can pass through. The PEG gives the particles a neutral charge and makes them hydrophilic, or attracted to water, so that they can pass easily through the mucosal meshwork without getting trapped.

The group is now able to encapsulate chemotherapeutic drugs in mucus-penetrating nanoparticles for a variety of different applications, including lung cancer and ovarian cancer. Additionally, Laura Ensign, an INBT-sponsored graduate student in the Hanes lab, showed in a recently-published journal article that her mucus-penetrating particles effectively delivered drugs in the mouse vaginal tract for longer times than previously reported (>24 h). This work could be applied to cervical cancer, where drug-loaded nanoparticles could be administered to travel through the mucosal lining of the reproductive tract for successful treatment.

Overall, the Hanes lab anticipates that their research will contribute to the effectiveness of many types of cancer treatments. Read more about Ensign’s recently published work here.

Story by Allison Chambliss, a Ph.D. student in the Department of Chemical and Biomolecular Engineering with interests in cellular biophysics and epigenetics.

 

It’s a small world: Micro/nanotechnology in regenerative medicine and cancer

Sageeta Bhatia

Nanotechnology, regenerative medicine and cancer will be the topic of a special biomedical engineering seminar on March 6 at 3 p.m. in the Darner Conference Room, Ross Building, Room G007 at the Johns Hopkins School of Medicine. Speaker Sangeeta Bhatia, MD, PhD, director, of the Laboratory for Multiscale Regenerative Technologies at Massachusetts Institute of Technology will present “It’s a small world: Micro/Nanotechnology in Regenerative Medicine and Cancer. ” She will discuss the role of micro and nanotechnology for mimicking, monitoring and perturbing the tissue microenvironment.

“I will present our work on reconstructing normal liver microenvironments using microtechnology, biomaterials and induced pluripotent stem cells as well as our work on normalizing diseased cancer microenvironments using both inorganic and organic nano materials,” Bhatia noted in an announcement.  Bhatia is a professor of Health Sciences and Technology and professor of Electrical Engineering and Computer Science at MIT.

The talk is hosted by associate professor of Materials Science and Engineering and affiliated faculty member of the Institute for NanoBioTechnology Hai-Quan Mao. The event is free and open to the Johns Hopkins Community. Refreshments will be served.

 

 

Engineered hydrogel helps grow new, scar-free skin

In early testing, this hydrogel, developed by Johns Hopkins researchers, helped improve healing in third-degree burns. Photo by Will Kirk/HomewoodPhoto.jhu.edu

Johns Hopkins researchers have developed a jelly-like material and wound treatment method that, in early experiments on skin damaged by severe burns, appeared to regenerate healthy, scar-free tissue.

In the Dec. 12-16 online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported their promising results from mouse tissue tests. The new treatment has not yet been tested on human patients. But the researchers say the procedure, which promotes the formation of new blood vessels and skin, including hair follicles, could lead to greatly improved healing for injured soldiers, home fire victims and other people with third-degree burns.

The treatment involved a simple wound dressing that included a specially designed hydrogel—a water-based, three-dimensional framework of polymers. This material was developed by researchers at Johns Hopkins’ Whiting School of Engineering, working with clinicians at the Johns Hopkins Bayview Medical Center Burn Center and the Department of Pathology at the university’s School of Medicine.

Third-degree burns typically destroy the top layers of skin down to the muscle. They require complex medical care and leave behind ugly scarring. But in the journal article, the Johns Hopkins team reported that their hydrogel method yielded better results. “This treatment promoted the development of new blood vessels and the regeneration of complex layers of skin, including hair follicles and the glands that produce skin oil,” said Sharon Gerecht, an assistant professor of chemical and biomolecular engineering who was principal investigator on the study.

Guoming Sun, left, a postdoctoral fellow, and Sharon Gerecht, an assistant professor of chemical and biomolecular engineering, helped develop a hydrogel that improved burn healing in early experiments. Photo by Will Kirk/HomewoodPhoto.jhu.edu

Gerecht said the hydrogel could form the basis of an inexpensive burn wound treatment that works better than currently available clinical therapies, adding that it would be easy to manufacture on a large scale. Gerecht suggested that because the hydrogel contains no drugs or biological components to make it work, the Food and Drug Administration would most likely classify it as a device. Further animal testing is planned before trials on human patients begin. But Gerecht said, “It could be approved for clinical use after just a few years of testing.”

John Harmon, a professor of surgery at the Johns Hopkins School of Medicine and director of surgical research at Bayview, described the mouse study results as “absolutely remarkable. We got complete skin regeneration, which never happens in typical burn wound treatment.”

If the treatment succeeds in human patients, it could address a serious form of injury. Harmon, a coauthor of the PNAS journal article, pointed out that 100,000 third-degree burns are treated in U. S. burn centers like Bayview every year. A burn wound dressing using the new hydrogel could have enormous potential for use in applications beyond common burns, including treatment of diabetic patients with foot ulcers, Harmon said.

Guoming Sun, Gerecht’s Maryland Stem Cell Research Postdoctoral Fellow and lead author on the paper, has been working with these hydrogels for the last three years, developing ways to improve the growth of blood vessels, a process called angiogenesis. “Our goal was to induce the growth of functional new blood vessels within the hydrogel to treat wounds and ischemic disease, which reduces blood flow to organs like the heart,” Sun said. “These tests on burn injuries just proved its potential.”

Gerecht says the hydrogel is constructed in such a way that it allows tissue regeneration and blood vessel formation to occur very quickly. “Inflammatory cells are able to easily penetrate and degrade the hydrogel, enabling blood vessels to fill in and support wound healing and the growth of new tissue,” she said. For burns, the faster this process occurs, Gerecht added, the less there is a chance for scarring.

Originally, her team intended to load the gel with stem cells and infuse it with growth factors to trigger and direct the tissue development. Instead, they tested the gel alone. “We were surprised to see such complete regeneration in the absence of any added biological signals,” Gerecht said.

Sun added, “Complete skin regeneration is desired for various wound injuries. With further fine-tuning of these kinds of biomaterial frameworks, we may restore normal skin structures for other injuries such as skin ulcers.”

Gerecht and Harmon say they don’t fully understand how the hydrogel dressing is working. After it is applied, the tissue progresses through the various stages of wound repair, Gerecht said. After 21 days, the gel has been harmlessly absorbed, and the tissue continues to return to the appearance of normal skin.

The hydrogel is mainly made of water with dissolved dextran—a polysaccharide (sugar molecule chains). “It also could be that the physical structure of the hydrogel guides the repair,” Gerecht said. Harmon speculates that the hydrogel may recruit circulating bone marrow stem cells in the bloodstream. Stem cells are special cells that can grow into practically any sort of tissue if provided with the right chemical cue. “It’s possible the gel is somehow signaling the stem cells to become new skin and blood vessels,” Harmon said.

Additional co-authors of the study included Charles Steenbergen, a professor in the Department of Pathology; Karen Fox-Talbot, a senior research specialist from the Johns Hopkins School of Medicine; and physician researchers Xianjie Zhang, Raul Sebastian and Maura Reinblatt from the Department of Surgery and Hendrix Burn and Wound Lab. From the Whiting School’s Department of Chemical and Biomolecular Engineering, other co-authors were doctoral students Yu-I (Tom) Shen and Laura Dickinson, who is a Johns Hopkins Institute for NanoBioTechnology (INBT) National Science Foundation IGERT fellow. Gerecht is an affiliated faculty member of INBT.

The work was funded in part by the Maryland Stem Cell Research Fund Exploratory Grant and Postdoctoral Fellowship and the National Institutes of Health.

The Johns Hopkins Technology Transfer staff has filed a provisional patent application to protect the intellectual property involved in this project.

Related links:

Sharon Gerecht’s Lab

Johns Hopkins Burn Center

Johns Hopkins Institute for NanoBioTechnology

 

Story by Mary Spiro

Hopkins faculty to present at American Society for NanoMedicine meeting

© Liudmila Gridina | Dreamstime.com

The American Society for NanoMedicine (ASNM) will hold its third annual meeting November 9 -11 at the Universities at Shady Grove Conference Center in Gaithersburg, Md. This year ASNM has worked closely with the Cancer Imaging Program, National Cancer Institute, and National Institutes of Health to create a conference with a special focus on nano-enabeled cancer diagnostics and therapies, and the synergy of the combination of nano-improved imaging modalities and targeted delivery.

The program also focuses on updates on the newest Food and Drug Administration, nanotoxicity, nanoparticle characterization, nanoinformatics, nano-ontology, results of the latest translational research and clinical trials in nanomedicine, and funding initiatives. This year’s keynote speaker is Roger Tsien, 2008 Nobel Prize Laureate. Numerous other speakers and breakout sessions are planned for the three day event. Two speakers affiliated with Johns Hopkins include Justin Hanes and Dmitri Artemov. Hanes is a professor of nanomedicine in the department of ophthalmology at the Johns Hopkins School of Medicine. Artemov is an associate professor of radiology/magnetic resonance imaging research, also at the School of Medicine.

The deadline for the poster abstracts is October 1. The top four posters submitted by young (pre and post doctoral) investigators will be selected to give a short 10-minute (eight slides) oral presentation on November 11.

ASNM describes itself as a “a non-profit, open, democratic and transparent professional society…focus(ing) on cutting-edge research in nanomedicine and moving towards realizing the potential of nanomedicine for diagnosis, treatment, and prevention of disease.” More information about the ASNM can be found on the Society’s official website.

 

 

Agenda set for Oct. 10 mini-symposium on cancer, nanotech

From the spring mini-symposium.

Johns Hopkins Physical Sciences-Oncology Center and Center of Cancer Nanotechnology Excellence will host a mini-symposium on Monday Oct., 10 in the Hackerman Hall Auditorium. Talks on topics related to cancer and nanotechnology begin at 9 a.m.

Speakers include:

  • 9:15 a.m.: The pulsating motion of breast cancer cell is regulated by surrounding epithelial cells. Speaker: Meng Horng Lee
  • 9:40 a.m.: Breast tumor extracellular matrix promotes vasculogenesis. Speaker: Abigail Hielscher
  • 10:00 a.m.: Attachment to growth substrate regulates expression of GDF15, an important molecule in metastatic cancer. Speaker: Koh Meng Aw Yong
  • 10:20 a.m.: Mucin 16 is a functional selectin ligand on pancreatic cancer cells. Speaker: Jack Chen
  • 10:40 a.m.: Particle tracking in vivo. Speaker: Pei-Hsun Wu

These talks are open to the entire Hopkins community. No RSVP is required. Refreshments will be served.

 

 

Nanobio postdocs offer trusted tips on getting grant money

Photo illustration by Mary Spiro.

Three postdoctoral fellows from Johns Hopkins Institute for NanoBioTechnology will offer a one-hour crash course in how to get those research dollars; July 27, 11 a.m. Krieger 205. Free for Hopkins community.

Funding dollars make the research world go ‘round. Few know that better than postdoctoral fellows, who would be out of work without it. As part of Johns Hopkins Institute for NanoBioTechnology’s last professional development seminar of the summer, three INBT affiliated postdoctoral fellows will offer their sage advice on preparing winning research grants.

Topics to be covered on the basic aspects of grant writing include:

  • knowing when to write a grant
  • identifying funding sources
  • planning a timeline
  • how to structure a competitive proposal
  • do’s and dont’s of grant writing and planning
  • basic science writing tips for conveying ideas clearly and succinctly

This seminar will be led by Eric Balzer, postdoctoral fellow with professor Konstantinos Konstantopoulos (ChemBE); Yanique Rattigan, postdoctoral fellow with professor Anirban Maitra (Oncology/Pathology); and Daniele Gilkes, postdoctoral fellow with professor Denis Wirtz (ChemBE).

For additional information on INBT’s professional development seminar series, contact Ashanti Edwards, INBT’s Academic Program Administrator at Ashanti@jhu.edu.