Fraley nets $500K Burroughs Wellcome Fund award for microfluidics work

Stephanie Fraley (Photo: Homewood Photography)

Stephanie Fraley (Photo: Homewood Photography)

A Johns Hopkins research fellow who is developing novel approaches to quickly identify bacterial DNA and human microRNA has won the prestigious $500,000 Burroughs Wellcome Fund (BWF) Career Award at the Scientific Interfaces. The prize, distributed over the next five years, helps transition newly minted PhDs from postdoctoral work into their first faculty positions.

Stephanie Fraley is a postdoctoral fellow working with Samuel Yang, MD, in Emergency Medicine/Infectious Disease at the Johns Hopkins School of Medicine and Jeff Wang, PhD, in Biomedical Engineering with appointments in the Whiting School of Engineering and the medical school. The goal of her work is to develop engineering technologies that can diagnose and guide treatment of sepsis, a leading cause of death worldwide, while simultaneously leading to improved understanding of how human cells and bacterial cells interact.

“Sepsis is an out of control immune response to infection,” Fraley said. “We are developing tools that are single molecule sensitive and can rapidly sort and detect bacterial and host response markers associated with sepsis. However, our devices are universal in that they can be applied to many other diseases.”

Fraley is using lab-on-chip technology, also known as microfluidics, to overcome the challenges of identifying the specific genetic material of bacteria and immune cells. Her technology aims to sort the genetic material down to the level of individual sequences so that each can be quantified with single molecule sensitivity.

“Bacterial DNA is on everything and contamination is everywhere, so trying to find the ones associated with sepsis is like the proverbial search for the needle in the haystack,” Fraley said. “With microfluidics, we can separate out all the bacterial DNA, so instead of a needle in a haystack, we have just the needles.”

Another advantage to Fraley’s novel technology is that it will assess all the diverse bacterial DNA present in a sample, without presuming which genetic material is important. “Bacteria are constantly evolving and becoming drug resistant,” she said. “With this technology, we can see all the bacterial DNA that is present individually and not just the strains we THINK we need to look for.”

Fraley’s award will follow her wherever her career takes her. The first two years of the prize fund postdoctoral training and that last three years help launch her professional career in academia. During the application process, she had to make a short presentation on her proposal to BWF’s panel of experts. “It was like the television show ‘Shark Tank’ but for scientists,” she laughs. “ The panelists gave me many helpful suggestions on my idea.”

Fraley earned her bachelor’s degree in chemical engineering from the University of Tennessee at Chattanooga and her doctorate in chemical and biomolecular engineering with Denis Wirtz, professor and director of Johns Hopkins Physical Sciences-Oncology Center. Wirtz is associate director for the Institute for NanoBioTechnology and Yang and Wang also are INBT affiliated faculty members.

BWF’s Career Awards at the Scientific Interface provides funding to bridge advanced postdoctoral training and the first three years of faculty service. These awards are intended to foster the early career development of researchers who have transitioned or are transitioning from undergraduate and/or graduate work in the physical/mathematical/computational sciences or engineering into postdoctoral work in the biological sciences, and who are dedicated to pursuing a career in academic research. These awards are open to U.S. and Canadian citizens or permanent residents as well as to U.S. temporary residents.

Landmark physical characterization of cancer cells completed

An enormous collaborative effort between a multitude of academic and research centers has characterized numerous physical and mechanical properties on one identical human cancer cell line. Their two-year cooperative study, published online in the April 26, 2013 journal Science Reports, reveals the persistent and agile nature of human cancer cells as compared to noncancerous cells. It also represents a major shift in the way scientific research can be accomplished.

Human breast cancer cells like these were used in the study. (Image created by Shyam Khatau/ Wirtz Lab)

Human breast cancer cells like these were used in the study. (Image created by Shyam Khatau/ Wirtz Lab)

The research, which was conducted by 12 federally funded Physical Sciences-Oncology Centers (PS-OC) sponsored by the National Cancer Institute, is a systematic comparison of metastatic human breast-cancer cells to non-metastatic breast cells that reveals dramatic differences between the two cell lines in their mechanics, migration, oxygen response, protein production and ability to stick to surfaces. They have also discovered new insights into how human cells make the transition from nonmalignant to metastatic, a process that is not well understood.

Denis Wirtz, a Johns Hopkins professor of chemical and biomolecular engineering with joint appointments in pathology and oncology who is the corresponding author on the study, remarked that the work adds a tremendous amount of information about the physical nature of cancer cells. “For the first time ever, scientists got together and have created THE phenotypic signature of cancer” Wirtz said. “Yes, it was just one metastatic cell line, and it will require validation with many other cell lines. But we now have an extremely rich signature containing many parameters that are distinct when looking at metastatic and nonmetastatic cells.”

Wirtz, who directs the Johns Hopkins Physical Sciences-Oncology Center, also noted the unique way in which this work was conducted: all centers used the same human cell line for their studies, which makes the quality of the results unparalleled. And, since human and not animal cells were used, the findings are immediately relevant to the development of drugs for the treatment of human disease.

“Cancer cells may nominally be derived from the same patient, but in actuality they will be quite different because cells drift genetically over just a few passages,” Wirtz said.  “This makes any measurement on them from different labs like comparing apples and oranges.” In this study, however, the genetic integrity of the cell lines were safeguarded by limiting the number times the original cell cultures could be regrown before they were discarded.

The nationwide PS-OC brings together researchers from physics, engineering, computer science, cancer biology and chemistry to solve problems in cancer, said Nastaran Zahir Kuhn, PS-OC program manager at the National Cancer Institute.

“The PS-OC program aims to bring physical sciences tools and perspectives into cancer research,” Kuhn said. “The results of this study demonstrate the utility of such an approach, particularly when studies are conducted in a standardized manner from the beginning.”

For the nationwide project, nearly 100 investigators from 20 institutions and laboratories conducted their experiments using the same two cell lines, reagents and protocols to assure that results could be compared. The experimental methods ranged from physical measurements of how the cells push on surrounding cells to measurements of gene and protein expression.

“Roughly 20 techniques were used to study the cell lines, enabling identification of a number of unique relationships between observations,” Kuhn said.

Wirtz added that it would have been logistically impossible for a single institution to employ all of these different techniques and to measure all of these different parameters on just one identical cell line. That means that this work accomplished in just two years what might have otherwise taken ten, he said.

The Johns Hopkins PS-OC made specific contributions to this work. Using particle-tracking microrheology, in which nanospheres are embedded in the cell’s cytoplasm and random cell movement is visually monitored, they measured the mechanical properties of cancerous versus noncancerous cells. They found that highly metastatic breast cancer cells were mechanically softer and more compliant than cells of less metastatic potential.

Using 3D cell culturing techniques, they analyzed the spontaneous migratory potential (that is, migration without the stimulus of any chemical signal) of cancerous versus noncancerous cells. They also analyzed the extracellular matrix molecules that were deposited by the two cell lines and found that cancerous cells deposited more hyaluronic acid (HA). The HA, in turn, affects motility, polarization and differentiation of cells.  Finally, the Hopkins team measured the level of expression of CD44, a cell surface receptor that recognizes HA, and found that metastatic cells express more CD44.

The next steps, Wirtz said, would be to validate these results using other metastatic cell lines.  To read the paper, which is published in an open access journal, follow this link: http://www.nature.com/srep/2013/130422/srep01449/full/srep01449.html

Excerpts from original press release by Princeton science writer Morgan Kelly were used.

 

 

 

 

INBT Seminar Aug. 22: New Questions in Aging

Everyone ages; it’s a fact. But as we age, must we also get sick? Scientists, engineers and clinicians are studying how cells change as we age. What they learn may help prevent the onset of disease.

Johns Hopkins Institute for NanoBioTechnology will host a half-day seminar “New Questions in Aging,” Aug. 22 from 10 a.m. until noon in the Hackerman Hall Auditorium (B-17).

Speakers include experts in the field of aging research.

Felipe Sierra

Felipe Sierra, PhD is director of the National Institute of Aging Division of Aging Biology at the National Institutes of Health. He will present the talk “Geroscience: Aging as the Major Risk Factor for Chronic Disease”  from 10-10:45 a.m.

Denis Wirtz, PhD, is the Theophilus H. Smoot Professor in the Chemical and Biomolecular Engineering at Johns Hopkins University and director of the Johns Hopkins Physical Sciences-Oncology Center. His talk is entitled “Single Cell Phenotyping for Studies in Aging;” 10:45 -11:00 a.m.

Denis Wirtz

Jeremy Walston, MD, is the Raymond and Anna Lublin Professor of Geriatric Medicine from the Johns Hopkins University School of Medicine, Division of Geriatric Medicine and Gerontology. His talk is entitled “A Biological Platform for Chronic Disease and Late Life Decline;” 11:00 to 11:15.

Questions and discussion on this interesting topic will follow the talks. This seminar is free and open to the entire Hopkins community. Faculty, students and staff are encouraged to attend for any or all portions of this seminar. For further information about the Johns Hopkins Physical Sciences-Oncology Center, go to http://psoc.inbt.jhu.edu/about/

Jeremy Walston

The Institute for NanoBioTechnology at Johns Hopkins University brings together 223 researchers from the Johns Hopkins Bloomberg School of Public Health, Krieger School of Arts and Sciences, School of Medicine, Applied Physics Laboratory, and Whiting School of Engineering to create new knowledge and new technologies at the interface of nanoscience and medicine.

 

Students talk cancer nanotech at Homewood March 21

Students affiliated with the Center of Cancer Nanotechnology Excellence (CCNE) and the Physical Sciences-Oncology Center (PS-OC) at Johns Hopkins University have organized a spring mini-symposium for March 21, 10 a.m. in the Hackerman Hall Auditorium at the Johns Hopkins University Homewood campus.

The student-run mini-symposiums aim to bring together researchers from across the campus affiliated with the PS-OC and CCNE. Graduate students training in these centers, both administered by Johns Hopkins Institute for NanoBioTechnology, work in various disciplines from physics to engineering to the basic biological sciences but with an emphasis on understanding cancer metastasis and developing methods for cancer diagnosis or therapy.

The invited speaker for the symposium is postdoctoral researcher Megan Ho of Duke University. Ho earned her PhD in mechanical engineering in the Wang lab in 2008. She is currently focused on developing microfluidic devices to investigate and control the fundamental reactions that form nanocomplexes for gene delivery. (10 a.m.)

Student apeakers, who will talk for 15 minutes, include:

  • Jane Chisholm (Justin Hanes lab/Ophthalmology): Cisplatin nanocomplexes for the local treatment of small cell lung cancer (10:20 a.m.)
  • Yunke Song (Jeff Wang Lab/Mechanical Engineering): Single Quantum Dot-Based Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction (10:35 a.m.)
  • Andrew Wong (Peter Searson Lab/Materials Science and Engineering): Intravisation into an artificial blood vessel (10:50 a.m.)
  • Brian Keeley: (Jeff Wang Lab/Mechanical Engineering): Overcoming detection limitations of DNA methylation in plasma and serum of cancer patients through utilization of nanotechnology. (11:05 a.m.)
  • Sebastian Barretto (Sharon Gerecht Lab/Chemical and Biomolecular Engineering): Development of Hydrogel Microfibers to Study Angiogenesis (11:20 a.m.)

View the symposium flyer here. The mini-symposium is free and open to the entire Johns Hopkins University community. No RSVP is required, although seating is limited.

Johns Hopkins Physical Sciences-Oncology Center

Center of Cancer Nanotechnology Excellence

Hopkins faculty to present at American Society for NanoMedicine meeting

© Liudmila Gridina | Dreamstime.com

The American Society for NanoMedicine (ASNM) will hold its third annual meeting November 9 -11 at the Universities at Shady Grove Conference Center in Gaithersburg, Md. This year ASNM has worked closely with the Cancer Imaging Program, National Cancer Institute, and National Institutes of Health to create a conference with a special focus on nano-enabeled cancer diagnostics and therapies, and the synergy of the combination of nano-improved imaging modalities and targeted delivery.

The program also focuses on updates on the newest Food and Drug Administration, nanotoxicity, nanoparticle characterization, nanoinformatics, nano-ontology, results of the latest translational research and clinical trials in nanomedicine, and funding initiatives. This year’s keynote speaker is Roger Tsien, 2008 Nobel Prize Laureate. Numerous other speakers and breakout sessions are planned for the three day event. Two speakers affiliated with Johns Hopkins include Justin Hanes and Dmitri Artemov. Hanes is a professor of nanomedicine in the department of ophthalmology at the Johns Hopkins School of Medicine. Artemov is an associate professor of radiology/magnetic resonance imaging research, also at the School of Medicine.

The deadline for the poster abstracts is October 1. The top four posters submitted by young (pre and post doctoral) investigators will be selected to give a short 10-minute (eight slides) oral presentation on November 11.

ASNM describes itself as a “a non-profit, open, democratic and transparent professional society…focus(ing) on cutting-edge research in nanomedicine and moving towards realizing the potential of nanomedicine for diagnosis, treatment, and prevention of disease.” More information about the ASNM can be found on the Society’s official website.

 

 

Johns Hopkins Integrated Imaging Center focuses on data

Shyenne Yang positions Drosophila embryos for fluorescence imaging. Photo by Marty Katz/baltimorephotographer.com

Heavy, black curtains and dimmed lights shroud the core of the Johns Hopkins Integrated Imaging Center (IIC). Yet researchers who peer through the advanced microscopes cloaked by these dark draperies view experimental samples more clearly than ever thanks to a combination of the high-tech equipment and the creative expertise offered by the center’s seven-member staff.

When describing Johns Hopkins University’s showpiece microscopy facility, it’s easy to rattle off a laundry list of available equipment and laboratory space able to prepare samples with nearly any contrasting agent found in the literature. The Homewood-based center contains devices that can image a sample in virtually any manner in 2-D, 3-D and even 4-D. IIC’s 3,500 square-foot facility comprising space in Dunning, Jenkins, and Olin Halls, boasts more than $7.5 million worth of state- of-the-art imaging equipment, including a Zeiss laser scanning microscope (LSM) 510 VIS confocal with a Confocor 3 fluorescence correlation spectroscopy (FCS) module—one of only a very few such uniquely configured laser scanning microscopes in the United States.

Director J. Michael McCaffery, a research professor in the Department of Biology at the Krieger School of Arts and Sciences, said the Hopkins community is thrilled to have access to such a versatile microscope with fluorescence correlation spectroscopy that is capable of cross-correlation analysis, with confocal imaging and a fully enclosed environmental system for live imaging. Researchers affiliated with Johns Hopkins Institute for NanoBioTechnology (INBT), the Johns Hopkins Physical Sciences Oncology Center and Center of Cancer Nanotechnology Excellence are also glad to have access to IIC’s menu of facilities.

“Fluorescence correlation spectroscopy allows for high-resolution spatial and temporal analysis of single biomolecules with respect to diffusion, binding, as well as enzymatic reactions in vitro and in vivo,” McCaffery said. In other words, you can see and measure a lot of really tiny stuff with it, something INBT affiliated researchers working at micron/nanometer resolutions are finding incredibly useful.

The center features multiple suites devoted to specific microscopy/imaging functions, as well as facilities for all manner of sample preparation. All these advanced tools help scientists and engineers characterize nanomaterials; and image cells, sub-cellular organelles, and biomolecules/ proteins at very small dimensions. But none of this fancy equipment would be of much use to researchers without the expertise of McCaffery and the IIC staff. McCaffery brings years of experience and a background in cell biology and microbiology. The center’s associate director, William Wilson, an associate research professor in the Department of Materials Science and Engineering at the Whiting School of Engineering, describes himself as a “chemist, turned physicist, who became an electrical engineer, who is now a materials scientist.”

Staff scientist Kenneth J.T. Livi, director of the IIC’s High-Resolution Analytical Electron Microbeam Facility located in Olin Hall, offers his unique perspective on earth and planetary sciences. Researchers can also consult with microscopy specialist/ trained biologist and FACS supervisor Erin Pryce, the FACS manager Yorke Zhang, computer/IT specialist Marcus Sanchez, and research assistants Leah Kim and Adrian Cotarelo, who both are currently earning their bachelor degrees in biology at Johns Hopkins.

From left, IIC director Michael McCaffery, FACS supervisor Erin Pryce, and associate director William Wilson with the BD FACSVantage SE. Photo by Mary Spiro

“Sometimes young researchers haven’t contemplated all the possibilities of how to use and apply an instrument; and don’t realize there are many different ways to utilize familiar tools in order to obtain new, in some cases better, information,” McCaffery said. “Our desire is always to approach a problem from many disparate perspectives to generate convergent data that corroborates each particular assay. Hopefully, results from each individual assay, allows the scientist to arrive at a convergent perspective that yields confidence in the results and conclusions.”

One of the easiest ways to obtain different microscopy data and improve corroboration among assays is simply to change the contrast mechanism.

“The most common contrast mechanisms used to image something are optical contrast (transparent versus opaque), polarization, and fluorescence,” said Wilson. “But there are many different ways you can manipulate how light interacts with the specimen and what you detect out of an objective.”

For example, ultrafast laser sources have made nonlinear optical forms of contrast an exciting new tool. Techniques like two-photon excited fluorescence and second harmonic generation (both available in the IIC) produce excellent spectral and structural information about samples because a smaller effective photon volume is excited. Wilson explained it like this: “Imagine turning your stereo all the way up and hearing the sound distorted. That distortion is created by the higher order acoustic harmonics from your stereo. The same happens with intense laser light resulting in new “colors” being generated from the object irradiated. The cool thing is that the different non-linear processes are often sensitive to different physical proper- ties or structural features, offering complementary information about your sample.”

In some cases, getting more detailed information simply requires looking at the right color range. The two-photon fluorescence and second harmonic signals appear at different wavelengths. If you excite a sample with enough energy to generate third order harmonics, that signal is detected at an even bluer wavelength, Wilson said. “With third harmonic generation, you only get signals from the interface of structures with no interference from anything else. This means you can simultaneously image fluorescence, polar order, and interface dynamics just by popping in a few filters and beam splitters,” he said.

“Over the past ten or so years, physicists and engineers focused on advanced microscopy, have produced better and more advanced laser and optical technologies, generating techniques that many researchers in the biological and biomedical sciences might not know exist,” Wilson said. “There also are a lot of applied physicists who are developing and using these new technologies who don’t know what an interesting sample is. We hope to help bridge this gap, becoming a place where these collaborative synergies can flourish.”

Sample preparation is another area where the center can help researchers. “Cell fractionation, for example, which is the breaking down of whole cells and separating them into their individual components, when combined with biochemical techniques and microscopy, can often allow researchers to pose more precise questions and to better analyze a biological problem,” McCaffery said.

“It is common for someone to come in and want to use a particular instrument or technique they read about in a paper,” McCaffery said. When that happens, McCaffery and Wilson are likely to give researchers “homework.”

“It’s important to remember that the goal is not to make a pretty picture,” Wilson said. “The goal is to answer a question, so sometimes we have to ask them, ‘What is your research question?’” An enviable set of microscopy tools combined with a team that brings years of training and experience from a variety of disciplines sets Johns Hopkins Integrated Imaging Center apart from the microscope on the individual researcher’s lab bench, as well as from facilities nationwide. Wherever possible, McCaffery said, IIC staff tries to be engaged in all of the research that is carried out in the center. “Simply, our involvement leads to better results and better science,” McCaffery added.

Researchers confirm this successful combination.

“The facilities at the IIC have allowed us to obtain critical information about the internal structure of our peptide nanomaterials that would have remained unknown without careful electron and fluorescence microscopy,” said J.D. Tovar, assistant professor of Chemistry. “Equally important, the scientific IIC staff members were vital participants making sure collaborative experiments were done meaningfully and students were trained competently. Our collaboration with Dr. Wilson has given some nice insights and at the same time has posed many more questions for future research.”

Praise like that for the IIC is always nice to hear, staff members say, but they emphasize that the services and tools they provide are just part of the job. “Part of being a scientist is learning not only how to gather information from a wide variety of tools but also understanding how to pose clear questions that lead to the right tools, in a nutshell, how to not waste time. If we can help you do that, then we have achieved our goal,” Wilson said.
This story originally appeared in Johns Hopkins Nano-Bio Magazine.

To read more about IIC’s facilities and services, go here.

Story by Mary Spiro

Photos by Mary Spiro and Marty Katz

 

Cancer nanotechnology mini-symposium brings students together

Jeaho Park, predoctoral student affiliated with the CCNE,  presenting at the INBT mini-symposium on cancer nanotechnology. (Photo: Mary Spiro)

About 30 people attended a mini-symposium on cancer nanotechnology hosted by Johns Hopkins Institute for NanoBioTechnology March 23. The event showcased current research from nine students affiliated with its Physical Sciences-Oncology Center (PS-OC) and Center of Cancer Nanotechnology Excellence (CCNE). Talks began at 9 a.m. in Hackerman Hall Auditorium.

“We become so focused on our own research that we don’t know what other students are working on,” said Stephanie Fraley, a predoctoral candidate chemical and biomolecular engineering in the laboratory of Denis Wirtz. “The beauty of an event like this is that we get to see work from across the campuses and across disciplines, all in one morning.”

Researchers, who each spoke for 15 minutes and fielded questions from the audience,  included the following:

  • 9:00 – 9:15 – Jeaho Park (Peter Searson Lab, CCNE): Quantum dots for targeting cancer biomarkers
  • 9:15 – 9:30 – Stephanie Fraley (Denis Wirtz Lab, PSOC): Role of Dimensionality in Focal Adhesion Protein Localization and Function
  • 9:15 – 9:30 – Kelvin Liu, PhD, (Jeff Wang Lab, CCNE): Decoding Circulating Nucleic Acids in Serum Using Microfluidic Single Molecule Spectroscopy
  • 9:45 – 10:00 – Laura Dickinson (Sharon Gerecht Lab, PSOC): Functional surfaces to investigate cancer cell interactions with hyaluronic acid
  • 10:00 – 10:15 – Craig Schneider (Justin Hanes Lab, CCNE): Mucus-penetrating particles for the treatment of lung cancer
  • Break
  • 11:00 – 11:15 – Eric Balzer, PhD, (K. Konstantopoulos Lab, PSOC): Migrating tumor cells dynamically adapt to changes in environmental geometry
  • 11:15 – 11:30 – Venugopal Chenna (Anirban Maitra Lab, CCNE): Systemic Delivery of Polymeric Nanoparticle Encapsulated Small Molecule Inhibitors of Hedgehog Signaling Pathway for the Cancer therapy
  • 11:30 – 11:45 – Sam Walcott, PhD, (Sean Sun Lab, PSOC): Surface stiffness influences focal adhesion nucleation and decay initiation, but not growth or decay
  • 11:45 – 12:00 – Yi Zhang (Jeff Wang Lab, CCNE): A quantum dot enabled ultrahigh resolution analysis of gene copy number variation

Download the CCNE-PSOC mini symposium agenda here.

John Fini, director of intellectual property for the Homewood campus schools, also gave a presentation on intellectual property and work of Johns Hopkins Technology Transfer.  Plans are in the works for the cancer nanotechnology min-symposiums to occur each spring and fall.

Johns Hopkins Physical Sciences-Oncology Center (PS-OC), also known as the Engineering in Oncology Center, is funded by a grant from the National Cancer Institute and aims to unravel the physical underpinnings involved in the growth and spread of cancer. Johns Hopkins Center of Cancer Nanotechnology Excellence, also funded by a grant from the NCI, aims to use a multidisciplinary approach to develop nanotechnology-based tools and strategies for comprehensive cancer diagnosis and therapy and to translate those tools to the marketplace.

Cancer Nanotechnology theme of INBT’s symposium, May 12-13

The Denis Wirtz lab research centers on investigations of cell micromechanics, cell architecture, nuclear shape and gene expression. Shown are healthy mouse cells with flurorescent staining of the nucleus (blue) and microtubules (green) emanating from the microtubule organizing center (red). (Photo: Wirtz Lab/JHU)

Nanoscale tools developed by engineers have yet to be fully explored and exploited for the diagnosis and treatment of diseases such as cancer. Nanotechnology for Cancer Medicine forms the focus of the fifth annual symposium for Johns Hopkins Institute for NanoBioTechnology (INBT), May 12 and 13, 2011 at the university’s Homewood campus.

Friday, May 13 will feature a symposium with talks from a slate of faculty experts in nanotechnology, oncology, engineering and medicine. Registration begins at 8:30 a.m. in Shriver Hall Auditorium.  A poster session begins at 1:30 p.m. upstairs in the Clipper Room showcasing research from INBT affiliated faculty laboratories across several Johns Hopkins University divisions. Past symposiums have attracted as many as 500 attendees and more than 100 research posters.

Keep checking INBT’s 2011 symposium page for updated information on speakers and more details on how to register and submit a poster title. The symposium and poster session are free for Johns Hopkins affiliated faculty, staff and students.

Keynote Speaker

Stephen B. Baylin is currently Deputy Director, Professor of Oncology and Medicine, Chief of the Cancer Biology Division and Director for Research, of The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.For the last 20 years, Stephen Baylin has studied the role of epigenetic gene silencing in the initiation and progression of human cancer. He and his colleagues have fostered the concept that DNA hypermethylation of gene promoters, and associated transcriptional silencing, can serve as an alternative to mutations for producing loss of tumor suppressor gene function. They have described some of the classic genes involved, invented approaches to randomly screen the cancer genome for such genes and to demonstrate their functional role in cancer progression, helped begin unravel the molecular mechanisms responsible for the initiation and maintenance of the gene silencing, and worked to utilize all of their findings for translational purposes.  Baylin has authored or co-authored over 375 full-length publications on the above and other areas of cancer biology.

Stephen Baylin will present the keynote talk at the 2011 Johns Hopkins Nano-Bio Symposium

He has been a member of committees of the American Cancer Society and of National Institutes of Health, and his honors include a Research Career Development Award from NIH, the Edwin Astwood Lectureship of the Endocrine Society, the 2003 Jack Shultz Memorial Lecture in Genetics, Fox Chase  Cancer Center, The 2004 National Investigator of the Year Award from the National Cancer Institute SPORE program, the Jack Gibson Visiting Professorship, University of Hong Kong Queen Mary Hospital, Hong Kong, The 2004 2nd Annual Sydney E. Salmon Lectureship in Translational Research, Arizona Cancer Center, the 2005 Shubitz Cancer Research Prize from the University of Chicago, and he currently holds the Virginia and D.K. Ludwig Chair in Cancer Research at Johns Hopkins. Baylin is also recipient of the 2007 Woodward Visiting Professor, Memorial Sloan-Kettering Cancer Center, the 2008 Raffaele Tecce Memorial Lecture, Trento, Italy, the 2008 The David Workman Memorial Award (jointly with Peter A. Jones, Ph.D.) from the Samuel Waxman Foundation, and the 2009 Kirk A. Landon-AACR Prize for Basic Cancer Research, also shared with Peter A. Jones, the 14th NCI Alfred G. Knudson Award in Cancer Genetics, and, most recently, the Nakahara Memorial Lecture prize at the 2010 Princess Takematsu  Symposium. Currently, he leads, with Peter Jones, the Epigenetic Therapy Stand up to Cancer Team.

Additional confirmed speakers for the 2011 INBT Symposium include:

  • Martin Pomper is a professor at Johns Hopkins School of Medicine with a primary appointment in Radiology and secondary appointments in Oncology, Radiation Oncology, and Pharmacology and Molecular Sciences, as well as Environmental Health Sciences at the Johns Hopkins Bloomberg School of Public Health. Pomper co-directs Johns Hopkins Center of Cancer Nanotechnology Excellence (CCNE).
  • Anirban Maitra is a professor at Johns Hopkins School of Medicine with appointments in Pathology and Oncology at Sol Goldman Pancreatic Research Center and secondary appointments in Chemical and Biomolecular Engineering at the Whiting School of Engineering and the McKusick-Nathans Institute of Genetic Medicine. Maitra co-directs Johns Hopkins Cancer Nanotechnology Training Center and is a project director in the CCNE.
  • Jin Zhang is an associate professor at Solomon H. Snyder Department of Neuroscience at Johns Hopkins School of Medicine with primary appointments in Pharmacology and Molecular Sciences and secondary appointments in Neuroscience, Oncology, and Chemical and Biomolecular Engineering.
  • Hy Levitsky is a professor of Oncology, Medicine and Urology at the Johns Hopkins School of Medicine and the Scientific Director of the George Santos Bone Marrow Transplant Program. Levitsky is a project director at the Center of Cancer Nanotechnology Excellence (CCNE).
  • Gregory Longmore is a professor at the Washington University in St. Louis School of Medicine, Department of Medicine, Oncology Division, Molecular Oncology Section and the Department of Cell Biology and Physiology. Longmore is a project co-director at Johns Hopkins Physical Sciences-Oncology Center (PS-OC).
  • Denis Wirtz is the Theophilus H. Smoot Professor of Chemical and Biomolecular Engineering in the Whiting School of Engineering at Johns Hopkins University. Wirtz is associate director of INBT and director of the Johns Hopkins Physical Sciences-Oncology Center, also known as the Engineering in Oncology Center. He has a secondary appointment in Oncology at the Johns Hopkins School of Medicine.

Workshops

During the afternoon of May 12, INBT will hold four 2-hour hands-on laboratory workshops organized by faculty affiliated with INBT, PS-OC or CCNE. Workshop registration will be limited to 10 persons per session. Sessions will begin at 1 and 3:30 p.m. and will be held in the New Engineering Building. Workshop details, including any costs, are forthcoming.

Become a sponsor

If you or your organization would like to learn how to sponsor INBT’s annual symposium, please contact our director of corporate partnerships, Tom Fekete, at tmfeke@jhu.edu or call him at 410-516-8891. Sponsors enjoy reduced rates on symposium-related events and advertising in our annual Nano-Bio magazine/symposium program, among other benefits.

Media inquiries may be directed to Mary Spiro, science writer and media relations director for INBT, at mspiro@jhu.edu or 410-516-4802.